EFFECTIVE ELASTIC MODULI OF A FIBROUS COMPOSITE
MATERIAL, ISOTROPIC ON THE AVERAGE

V. V. Kolokol'chikov and G. N. Sapego , UDC 678:539:376

There exist a number of methods for finding the effective moduli of composite materials (see, for ex-
ample, [1, 2]). The exact calculation of the effective moduli of a composite material is difficult. The aniso-
tropic effective elastic moduli of several fibrous structures with transversally isotropic or orthotropic sym-
metry were found in a correlation approximation in [3, 4], using the Royce scheme in [5], as well as in [6] on
the basis of a simplified variant of the theory of [7]. There exist [8] simple formulas for the effective Young
modulus of a composite material made of fiber, in the cylindrical shell of the matrix, in the case of axial load-
ing and a single-row distribution of the pressure. ’

§1. Let us consider a composite material, chaotically reinforced with isotropic fibers. As a result of
the chaotic character of the orientation of the fibers, the composite material will be isotropic on the average.

The indices c, f, m denote quantities characterizing the composite material, a fiber, and a matrix, re-
spectively. The effective elastic moduli are obtained on the basis of a generalized rule of mixing, with consecu~
tive and parallel addition of some elements. For this purpose, we introduce Ng (N is the number of fibers in
the composite material) elements, consisting of a fiber, surrounded by an effective cylindrical layer of the
material of the matrix. The volume of the effective layer is equal to the volume of the matrix V?n divided by
Ng.

The expression for the effective density of the free energy, neglecting the interaction between a resin
and a boric fiber, is the sum of the energies of the matrix and the isotropic fiber:
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where Ay, iy, Af, puf are the Lamé constants of the matrix and the fiber, depending on the temperature; Vi,
Vg are the relative volumetric contents of the matrix and the fiber in the composite material; ayy,, af are the
coefficients of linear thermal expansion of the matrix and the fiber; 4 =T —T, is the temperature drop; T is the
temperature at which there are no stresses or deformations; T is the absolute equilibrium temperature, not
depending on the coordinates; 8{-(mk) (i, j, k=1, 2, 3) are the components of the deformations of the matrix for
elements of the k-th kind, being the mean elements over all the parallel or consecutive elements. In (1.1) the
effective density of the free energy of the composite material is found by superposition of the energies of
elements depending on the deformations, different for different elements and different components of the com-
posite material. In (1.1) and in what follows the summation is carried out over all the repeating Roman sub-
sceripts. )

As a result of the postulation of the isotropy of the composite material on the average, the manner of
writing (1.1) corresponds to three (k=1, 2, 3) equally justified kinds of middle elements. The elements of each
kind are parallel to each other, and perpendicular to elements of another kind.

We direct the axes of the three types of elements along the axes of coordinates; then if, relative to some
arbitrary loading, the elements of one type are parallel one to another, the elements of the two other types,
both within the type of elements and between themselves, will be connected in sequence.

Kuibyshev. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 155-159,
March-April, 1977. Original article submitted April 14, 1976.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

270



25

» kgf Jem?
o
S
(")
™

o NE
T =] o .
3 3 =
. - > [
B X
‘S': ..:%02 ";,2 .
S i =03 7 =0,
= ® ro_1 3 T r=s00°
. oF Nt 4 ®%,
P ]
\ U 7 S3
\‘\ = o
0 LA ' A a
+! 1 1 7 o
G4 a8 Vn ) 275 300 30 T, K . 1 2
Fig. 1 Fig. 2 Fig. 3

We denote by € (lljnk), S(if.k) k=1, 2, 3) the components of the tensors of the deformations (below called
elementary deformations), aw)eraged over an element of the k-th type, respectively, for the matrix and the fiber,
for which the rules for the summation of the deformations of elements participating in a consecutive connection
are valid; to obtain the deformations of the composite material, the rule of the equality of the deformations of
elements, participating in a parallel connection, to the deformations of the composite material is also valid.

The deformations of the composite material, to which the elements offer a resistance, being connected in
parallel, are equal to the elementary deformations of the matrix and the fiber. The deformations of the com-
posite material, which are resisted by two types of elements, connected consecutively, are equal to the sum of
the elementary deformations of the matrices and the fibers of the elements of these two types, i.e.,
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In equalities (1.2). and in what follows summation is not carried out over the repeating Greek subscripts. The
mean deformations of elements of one kind are assumed identical for a region of identical components.

To determine the effective elastic moduli it is sufficient to find them during the course of any arbitrary

processes. With arbitrary processes, expression (1.1) can correspond to anisotropic materials if the following
equalities are not satisfied for them
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%% = const, M = const, & = const.

The possibility that (1.3) will not be satisfied is a consequence of the nonequivalent replacement of an isotropic
composite material by a system of three types of elements. To eliminate this nonequivalence, we limit our-
selves to processes leading to (1.3). As such processes, let us consider two, for which
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For the quantities entering into (1.2), as a result of the equivalance of the axes, we can set
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eoh) = ell; e =8P, t=m,f, a+p. (1.6)

The deformations 8;]-(& k), entering into (1.1), depend on the elementary deformations € i(§ k) with the pro-
cesses (1.4), (1.5) in the same way as the deformations of the composite material Eg’) depen(i on s{?ﬂk) or on
ey in the case of the processes (1.4), (1.5), where the composite }naterial is a monomer of m or f. The lat-
ter assertion stems from the fact that, in the case of a monomer, Eij(g k) coincides with sigc) and, of the deforma-
tions Sigg k) | we have only € ignk) or eigfk) .

271



From this, and from (1.2), (1.6), it follows that the elementary deformations and the deformations of
elements of some type entering into (1.1) will be equal to each other if they correspond to loads, relative to
which the elements are connected in a parallel manner. If the elements are connected in a consecutive manner,
then, from (1.1), deformations corresponding to the loading of consecutive elements will be greater than the
elementary deformations by (2/3)Ng times ((2/3)Nf is the number of consecutive elements).. -Thus, the defor-
mations ailfgk) are defined in terms of the elementary deformations using the relationships
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With the process (1.4), (1.6), satisfaction of relationships (1.3), taking account of (1.7), (1.2) leads to the equal-
ities '
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In the case of the process (1.5), (1.6), from (1.3), (1.7), (1.2) it follows
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The deformations s&(éﬁ ) and s'a( a) (o =B) are connected with the true mean deformation of the ¢ -component

and of the elements participating in the consecutive connection, and with the volumetric contents of the com-
ponents by the relationships
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Formulas (1.10) follow from (1.7), respectively, withk =8, y and k=¢, B, since 8&(55 ) and 8&%‘1) are deforma~
tions, averaged over the volume of the consecutive elements, and €5, and ng‘ are deformations, averaged over

the volume of the fibers and the matrix, respectively, with ¢ equal to m and f. We note that the deformations
8&5?’ and sgéw (o =B =%) are equal, respectively, to the deformations Egoo‘z and 83% of the £ -component,

participating in a parallel connection,

The values of the volumetric elastic moduli K; and the shear elastic moduli of the p £ -éomponents are
detéermined, respectively, for the processes (1.4), (1.6) and (1.5), (1.6) in a system of consecutively connected

elements
3K§30§£b= Oaas E=fm; (1.11)
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where oy, and o, pare the corresponding parts of the tensor of the stresses, attributed to consecutively con-
nected elements.

The substitution of the first and second equalities of (1.2), (1.10), (1.11), respectively, into the second
equalities of (1.8), (1.9) gives

K v, _ B4V
R RV, TR, VT v v, (1.12)
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Substituting (1.3) into (1.1) and differentiating the result with respect to 8?" taking account of relation-
ships (1.8), (1.9), we obtain formulas for the effective Lamé coefficients A, p and the module K, as well as
the coefficient of linear thermal expansion e, of a fibrous composite material

K, = KnV, (4 + 2:0%9 + K VA3 — 2%)/9; {(1,13)
Re = WmVm(l -+ 2033 - p,; Vi1 + 201 — 0)21/3;
he = K — (213, «, = 7./3K,,
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(the values of ®and 1 are determined by the relationships (1.12)).

§2. Asanexampleof the application of formula (1.13), let us consider a matrix, i.e., ED-6 epoxide resin,
hardened with methyltetrahydrophthalic anhydride and reinforced with a polycrystalline boric fiber. I [9],
values were obtained for the elastic moduli, depending on T, and the coefficient of linear thermal expansion of
the epoxide resin under discussion. We use these data, as well as the elastic moduli of polycrystalline boric
fiber [10], neglecting their dependence on T in comparison with the corresponding dependence for the resin,
Figures 1-3 show calculated dependences of the elastic moduli of a composite material on the relative volume-
tric concentration, temperature, and degree of cross-linking r,/Nb, where r, is the distance between the ends
of a resin —hardener chain; b is the mean length of a segment; N is the number of segments in a chain. AsFig.
1 shows, the elastic moduli of a composite material are equal to the elastic moduli of a component if the rela-
tive concentration of the latter is equal to unity. The course of the curves in Fig. 1 corresponds qualitatively
to the fact that a chaotic disorientation of the fibers decreases the elastic modulus of the composite material.
The decrease in the elastic moduli (see Figs. 2 and 3) with a rise in the temperature and with a decrease in the
degree of cross-linking is also in agreement with the experimental data.
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